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UniFL

Fig. 1: We propose UniFL, a unified framework that leverages feedback learning to
elevate the visual generation quality, enhance preference aesthetics, and accelerate the
inference process. The figure illustrates the outcomes obtained by optimizing SDXL
through UniFL, and the last three images depict the results with 4 steps inference.

Abstract. Diffusion models have revolutionized the field of image gen-
eration, leading to the proliferation of high-quality models and diverse
downstream applications. However, despite these significant advance-
ments, the current competitive solutions still suffer from several limita-
tions, including inferior visual quality, a lack of aesthetic appeal, and in-
efficient inference, without a comprehensive solution in sight. To address
these challenges, we present UniFL, a unified framework that leverages
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feedback learning to enhance diffusion models comprehensively. UniFL
stands out as a universal, effective, and generalizable solution applicable
to various diffusion models, such as SD1.5 and SDXL. Notably, UniFL
incorporates three key components: perceptual feedback learning, which
enhances visual quality; decoupled feedback learning, which improves
aesthetic appeal; and adversarial feedback learning, which optimizes in-
ference speed. In-depth experiments and extensive user studies validate
the superior performance of our proposed method in enhancing both the
quality of generated models and their acceleration. For instance, UniFL
surpasses ImageReward by 17% user preference in terms of generation
quality and outperforms LCM and SDXL Turbo by 57% and 20% in
4-step inference. Moreover, we have verified the efficacy of our approach
in downstream tasks, including Lora, ControlNet, and AnimateDiff.

Keywords: Diffusion Models · Feedback Learning · Acceleration

1 Introduction

The emergence of diffusion models has catapulted the field of Text-to-Image
(T2I) into a realm of unparalleled progress, marked by notable contributions
like DALLE-3 [34], Imagen [38], Midjourney [49], and etc,. In particular, the
introduction of open-source image generation models, exemplified by stable dif-
fusion [35], has inaugurated a transformative era of Text-to-Image, giving rise to
numerous downstream applications such as T2I Personalization [15, 21, 37, 60],
Controllable Generation [29,33,61] and Text-to-Video (T2V) Generation [16,18,
53]. Despite the remarkable progress achieved thus far, current stable diffusion-
based image generation models still exhibit certain limitations. i) Inferior
Quality : the generated images often suffer from poor quality and lack authentic-
ity. Examples include characters with incomplete limbs or distorted body parts,
as well as limited fidelity in terms of style representation. ii) Lack Aesthetics:
there is a notable bias in the aesthetic appeal of the generated images, as they
often fail to align with human preferences. Deficiencies in crucial aspects such as
details, lighting, and atmosphere further contribute to this aesthetic disparity.
iii) Inference Inefficiency : the iterative denoising process employed by dif-
fusion models introduces inefficiencies that significantly impede inference speed,
thereby limiting the practicality of these models in various application scenarios.

Recently, numerous works have endeavored to address the aforementioned
challenges. For instance, SDXL [32] enhances the generation quality of diffu-
sion models by refining training strategies, while RAPHAEL [59] resorts to the
techniques of Mixture of Experts (MoE) [14,44,63]. RAFT [11], HPS [54,55], Im-
ageReward [57], and DPO [50] propose incorporating human feedback to guide
diffusion models toward aligning with human preferences. SDXL Turbo [40],
PGD [39], and LCM [27, 28], on the other hand, tackle the issue of inference
acceleration through techniques like distillation and consistency models [46].
However, these methods primarily concentrate on tackling individual problems
through specialized designs, which poses a significant challenge for the direct
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integration of these techniques. For example, MoE significantly complicates the
pipeline, making the acceleration method infeasible, and the consistency mod-
els [46] alter the denoising process of the diffusion model, making it arduous
to directly apply the ReFL framework proposed by ImageReward [57]. Natu-
rally, a pertinent question arises: Can we devise a more effective approach that
comprehensively enhances diffusion models in terms of image quality, aesthetic
appearance, and generation speed?

In this paper, we present UniFL, an innovative approach that offers a com-
prehensive improvement to diffusion models through unified feedback learning.
UniFL aims to elevate the visual generation quality, enhance preference aesthet-
ics, and accelerate the inference process. To achieve these objectives, we propose
three key components. Firstly, we introduce a pioneering perceptual feedback
learning (PeFL) framework that effectively harnesses the extensive knowledge
embedded within diverse existing perceptual models to improve visual genera-
tion quality. This framework enables the provision of more precise and targeted
feedback signals, ultimately enhancing the quality of visual generation in various
aspects.

Secondly, we employ decoupled feedback learning to optimize aesthetic qual-
ity. By breaking down the coarse aesthetic concept into distinct aspects such
as color, atmosphere, and texture, UniFL simplifies the challenge of aesthetic
optimization. Additionally, we introduce an active prompt selection strategy to
choose the prompts that are more informative and diverse to facilitate more
efficient aesthetics preference feedback learning.

Lastly, UniFL develops adversarial feedback learning, wherein the reward
model and diffusion model are trained adversarially, enabling the samples un-
der the low denoising steps to be well optimized via the reward feedback, and
finally achieves superior inference acceleration. UniFL presents a unified formu-
lation of feedback learning that is both straightforward and versatile, making it
adaptable to a wide range of models and yielding impressive improvements. Our
contributions are summarized as follows:

– New Insight : Our proposed method, UniFL, introduces a unified frame-
work of feedback learning to optimize the visual quality, aesthetics, and
inference speed of diffusion models. To the best of our knowledge, UniFL
offers the first attempt to address both generation quality and speed simul-
taneously, offering a fresh perspective in the field.

– Novelty and Pioneering : In our work, we shed light on the untapped
potential of leveraging existing perceptual models in feedback learning for
diffusion models. We highlight the significance of decoupled reward models
and elucidate the underlying acceleration mechanism through adversarial
training. We believe our ablation experiments provide valuable insights that
enrich the community’s understanding of these techniques.

– High Effectiveness: Through extensive experiments, we demonstrate the
substantial improvements achieved by UniFL across multiple types of dif-
fusion models, including SD1.5 and SDXL, in terms of generation quality



4 J. Zhang et al.

and acceleration. Furthermore, UniFL outperforms competitive existing ap-
proaches and exhibits strong generalization on various downstream tasks.

2 Related Work

2.1 Text-to-Image Diffusion Models

Recently, diffusion models have gained substantial attention and emerged as
the de facto method for text-to-image generation, surpassing traditional proba-
bilistic models like GAN [17] and VAE [22]. Numerous related works have been
proposed, including GLIDE [30], DALL-E2 [34], Imagen [38], CogView [10] and
many others. Among these, Latent Diffusion Models (LDM) [35] extend the dif-
fusion process to the latent space and significantly improve the training and
inference efficiency of the diffusion models, opening the door to diverse applica-
tions such as controllable generation [33,61], image editing [3,19,29], and image
personalization [15, 21, 37] and so on. Despite the progress achieved thus far,
current text-to-image diffusion models still have limitations in inferior visual
generation quality, deviations from human aesthetic preferences, and inefficient
inference. The target of this work is to offer a comprehensive solution that ef-
fectively addresses these issues.

2.2 Improvements on Text-to-Image Diffusion Models

Given the aforementioned limitations, researchers have proposed various meth-
ods to tackle these issues. Notably, [6, 32, 59] focuses on improving generation
quality through more advanced training strategies. Building upon the success of
reinforcement learning with human feedback (RLHF) [1,31] in the field of LLM,
[2, 54, 55, 57, 64] explore the incorporation of human feedback to improve image
aesthetic quality. On the other hand, [27, 28, 39, 41, 46] concentrate on acceler-
ation techniques, such as distillation and consistency models [46] to achieve in-
ference acceleration. While these methods have demonstrated their effectiveness
in addressing specific challenges, their independent nature makes it challeng-
ing to combine them for comprehensive improvements. In contrast, our study
unifies the objective of enhancing visual quality, aligning with human aesthetic
preferences, and acceleration through the feedback learning framework.

3 Preliminaries

Text-to-Image Diffusion Model. Text-to-image diffusion models leverage dif-
fusion modeling to generate high-quality images based on textual prompts via
the diffusion model, which generates desired data samples from Gaussian noise
through a gradual denoising process. During pre-training, a sampled image x is
first processed by a pre-trained VAE encoder to derive its latent representation
z. Subsequently, random noise is injected into the latent representation through
a forward diffusion process, following a predefined schedule {βt}T . This process
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can be formulated as zt =
√
αtz +

√
1− αtϵ, where ϵ ∈ N (0, 1) is the random

noise with identical dimension to z, αt =
∏t

s=1 αs and αt = 1 − βt. To achieve
the denoising process, a UNet ϵθ is trained to predict the added noise in the
forward diffusion process, conditioned on the noised latent and the text prompt
c. Formally, the optimization objective of the UNet is:

L(θ) = Ez,ϵ,c,t[||ϵ− ϵθ(
√
αtz +

√
1− αtϵ, c, t)||22] (1)

Reward Feedback Learning. Reward feedback learning(ReFL) [57] is a pref-
erence fine-tuning framework that aims to improve the diffusion model via hu-
man preference feedback. It primarily includes two phases: (1) Reward Model
Training and (2) Preference Fine-tuning. In the Reward Model Training phase,
human preference data is collected. These data are then utilized to train a human
preference reward model, which serves as an encoding mechanism for capturing
human preferences. More specifically, considering two candidate generations, de-
noted as xw (preferred generation) and xl (unpreferred one), the loss function
for training the human preference reward model rθ can be formulated as follows:

L(θ)rm = −E(c,xw,xl)∼D[log(σ(rθ(c, xw)− rθ(c, xl)))] (2)

where D denotes the collected feedback data, σ(·) represents the sigmoid func-
tion, and c corresponds to the text prompt. The reward model rθ is optimized
to produce a preference-aligned score that aligns with human preferences. In the
Preference Fine-tuning phase, ReFL begins with an input prompt c, initializing a
latent variable xT at random. The latent variable is then progressively denoised
until reaching a randomly selected timestep t. At this point, the denoised image
x′0 is directly predicted from xt. The reward model obtained from the previous
phase is applied to this denoised image, generating the expected preference score
rθ(c, x

′
0). This preference score enables the fine-tuning of the diffusion model to

align more closely with human preferences:

L(θ)refl = Ec∼p(c)Ex′
0∼p(x′

0|c)[−r(x′0, c)] (3)

Our method follows a similar learning framework to ReFL but devises several
novel components to enable comprehensive improvements.

4 UniFL: Unified Feedback Learning

Our proposed method, UniFL, aims to improve the stable diffusion in various
aspects, including visual generation quality, human aesthetic quality, and infer-
ence efficiency. our method takes a unified feedback learning perspective, offering
a comprehensive and streamlined solution.

An overview of UniFL is illustrated in Fig.2. In the following subsections, we
delve into the details of three key components: perceptual feedback learning to
enhance visual generation quality (Sec. 4.1); decoupled feedback learning to im-
prove aesthetic appeal (Sec. 4.2); and adversarial feedback learning to facilitate
inference acceleration (Sec. 4.3).
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Fig. 2: The overview of UniFL, which leverages an unified feedback learning frame-
work to comprehensively enhance the model performance and inference speed. The
training process of UniFL is divided into two stages, the first stage aims to improve
visual quality and aesthetics, and the second stage speeds up model inference. The gray
area within the denoise steps are the timesteps where feedback learning optimizes.

4.1 Perceptual Feedback Learning

Current diffusion models exhibit limitations in achieving high-quality visual gen-
eration, particularly in areas such as image style shift and object structure dis-
tortion. These limitations stem from the reliance on reconstruction loss solely
in the latent space, which lacks supervision based on visual perception in the
image space. To address this issue, as illustrated in Fig.3, we propose Perceptual
Feedback Learning (PeFL) to fine-tune diffusion model using visual feedback
provided by existing perceptual models. Our key insight is that various visual
perception models already encapsulate rich visual priors from diverse aspects.
The complete PeFL process is summarized in Algorithm 1. In contrast to ReFL,
which starts from a randomly initialized latent representation and only considers
the text prompt as a condition, PeFL incorporates image content as an addi-
tional visual condition for perceptual guidance. Specifically, given a text-image
pair, (c, x), we first select a forward step Ta and inject noise into the ground truth
image to obtain a conditional latent sequence x0 → x1... → xTa

. Subsequently,
we randomly select a denoising time step t and denoising from xTa , yielding
xTa → xTa−1... → xt. Next, we directly predict xt → x′0. Various perceptual
models are employed to provide feedback on x′0 for specific visual aspects:

i) Style: To capture image style, we employ the VGG model to encode image
features and extract visual style using the widely adopted gram matrix in style
transfer. The feedback on style is calculated as follows:

L(θ)pefl_style = Ex0∼D,x′
0∼G(xta )

∥Gram(V (x
′

0))−Gram(V (x0))∥2, (4)

where V is the VGG network, and Gram is the calculation of the gram matrix.
ii) Structure: For extracting visual structure information, we utilize visual

instance segmentation models, as instance masks provide fundamental object
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Algorithm 1 Perceptual Feedback Learning (PeFL) for LDMs
1: Dataset: Perceptual text-image dataset D = {(txt1, img1), ...(txtn, imgn)}
2: Input: LDM with pre-trained parameters w0, visual perceptual model m·, visual perceptual loss

function Φ, visual perceptual loss weight λ
3: Initialization: The number of noise scheduler time steps T , add noise timestep Ta, denoising

time step t.
4: for perceptual data point (txti, imgi) ∈ D do
5: x0 ← VaeEnc(imgi) // Obtain the latent representation of ground truth image
6: xTa ← AddNoise(x0) // Add noise into the latent according to Eq.1
7: for j = Ta, ..., t + 1 do
8: no grad: xj−1 ← LDMwi

{xj}
9: end for
10: with grad: xt−1 ← LDMwi

{xt}
11: x

′
0 ← xt−1 // Predict the original latent by noise scheduler

12: img
′
i ← VaeDec(x

′
0) // From latent to image

13: Lpefl ← λΦ(m(img
′
i), GT (imgi) // PeFL loss by perceptual model

14: wi+1 ← wi // Update LDMwi
using PeFL loss

15: end for

Prompt: A cat, by 
Picasso
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Noise Pred

Direct Pred
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Encoder
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Decoder
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skateboard in the air

𝑥!

Inject Noise

𝑥!"# 𝑥$…

Noise Pred

Direct Pred
VAE

Encoder
VAE

Decoder

Ground Truth
Mask

Instance Segmentation
Prediction

Latent Noise MSE               
Latent Space

Pixel Space
Cls Loss  

Mask Loss
Style Generation Feedback

Structure Generation Feedback
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Fig. 3: The illustration of the PeFL on the (a) style and (b) structure optimization. The
original noise MSE loss in the latent space only cares about the coarse reconstruction
and overlooks the particular visual aspect of the generated image, which can be boosted
by the existing various perceptual models via feedback learning.

structure descriptions. The objective is formulated as:

L(θ)pefl_structure = Ex0∼D,x′
0∼G(xta )

Linstance(mI(x
′

0), GT (x0)) (5)

where mI is the instance segmentation model, GT (x0) is the ground truth in-
stance segmentation annotation and Linstance is the instance segmentation loss.

The flexibility of PeFL allows us to leverage various existing visual perceptual
models, for example, semantic segmentation models, to provide specific visual
feedback. More experiments and results can be found in the Appendix.

4.2 Decoupled Feedback Learning

Decoupled Aesthetic Fine-tuning. Unlike objective visual quality, aesthetic
quality is abstract and subjective, necessitating human aesthetic preference feed-
back to guide the model toward optimization based on human preferences. Im-
ageReward [57] addresses this issue via a human preference reward model trained
on collected preference data within the ReFL framework. While effective, we ar-
gue that ImageReward is suboptimal as it relies on a single reward model trained
with coarse annotated aesthetic preference data. The primary challenge arises
from the attempt to encapsulate human preferences across multiple dimensions
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within a single reward model, which will result in inherent conflicts, as evi-
denced in certain Large Language Model (LLM) studies [48]. To address this
problem, we propose decoupling the different aesthetic dimensions during prefer-
ence modeling to enable more effective aesthetic feedback learning. Specifically,
we decompose the general aesthetic concept into representative dimensions and
annotate them separately. These dimensions include color, layout, lighting, and
detail. The data collection process is described in detail in the Appendix. Sub-
sequently, we train an aesthetic preference reward model using this annotated
data according to Eq.2. The objective of the decoupled feedback learning is:

L(θ)aes =
∑
d

Ec∼p(c)Ex′
0∼p(x′

0|c)[ReLU(αd − rd(x
′
0, c))] (6)

rd is the aesthetic reward model on d dimension, d ∈ {color, layout, detail, lighting}
and αd are the dimension-aware hinge cofficient for loss calculation.
Active Prompt Selection. We observed that when using randomly selected
prompts for preference fine-tuning, the diffusion model tends to rapidly overfit
due to the limited semantic richness, leading to diminished effectiveness of the
reward model. This phenomenon is commonly referred to as overoptimization
[62]. To address this issue, we further propose an active prompt selection strategy,
which selects the most informative and diverse prompt from a prompt database.
This selection process involves two key components: a semantic-based prompt
filter and nearest neighbor prompt compression. By leveraging these techniques,
the over-optimization can be greatly mitigated, achieving more efficient aesthetic
reward fine-tuning. More details of this strategy are presented in the Appendix.

4.3 Adversarial Feedback Learning

The slow iterative denoising process employed in text-to-image diffusion models
poses a significant hindrance to their practical application. To address this limi-
tation, recent advancements, such as UFOGen [58] and SDXL-Turbo [42], have
proposed incorporating adversarial training objectives into fine-tuning diffusion
models. Building upon this insight, we introduce an adversarial feedback-learning
method that combines feedback learning with the adversarial objective, aiming
to accelerate the inference process.

The original optimization objective of the diffusion model seeks to increase
the reward score of the output image, with the reward model held constant.
Rather than freeze the reward model, we incorporate the optimization of an
adversarial reward model ra(·) during the fine-tuning process, treating it as a
discriminator. In this way, the diffusion model serves as the generator and
is optimized to enhance the reward score, while the reward model acts as the
discriminator, aiming to distinguish between preferred and unpreferred samples.
Consequently, the objective of adversarial feedback learning can be reformulated
as follows:

LG(θ) = Ec∼p(c)Ex′
0∼p(x′

0|c)[−ra(x
′
0, c)],

LD(ϕ) = −E(x0,x′
0,c)∼Dtrain,t∼[1,T ][log σ(ra(x0)) + log(1− σ(ra(x

′
0)))].

(7)
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where θ and ϕ are the parameters of the diffusion model and discriminator.
In practice, we follow PeFL to achieve adversarial training, considering the GT
image as the preferred sample and the denoised image as the unpreferred sample.
In this way, we continually guide the diffusion model to generate samples with
higher fidelity and visual quality, which greatly accelerates the inference speed.

4.4 Training Pipeline

Our training process consists of two stages, each targeting a specific objective.
In the first stage, we focus on improving visual generation quality and aesthet-
ics. In the second stage, we apply adversarial feedback learning to accelerate the
diffusion inference speed, which simultaneously updates the diffusion model and
reward model with the adversarial training objective. We also integrate decou-
pled feedback learning to maintain aesthetics.

L1(θ) = L(θ)pefl + L(θ)aes; L2(θ, ϕ) = LG(θ) + LD(ϕ)) + L(θ)aes (8)

5 Experiments

5.1 Implementation Details and Metrics

Dataset. For the PeFL training stage, we curated a large and high-quality
dataset consisting of approximately 150k artist-style text images for style op-
timization and utilized COCO2017 [26] train split dataset with instance anno-
tations and captions for structure optimization. Additionally, we collected the
human preference dataset for the decoupled aesthetic feedback learning from di-
verse aspects (such as color, layout, detail, and lighting). The 100,000 prompts
are selected for aesthetic optimization from DiffusionDB [52] through active
prompt selection. During the adversarial feedback learning, we simply utilize an
aesthetic subset of LAION [43] with image aesthetic scores above 5.
Training Setting. We employ the VGG-16 [45] network to extract gram matrix
concepts for style PeFL and utilize the SOLO [51] as the instance segmentation
model. We utilize the DDIM scheduler with a total of 20 inference steps. Ta =
10 and the optimization steps t ∈ [5, 0] during PeFL training. For adversarial
feedback learning, we initialize the adversarial reward model with the weight of
the aesthetic preference reward model of details. During adversarial training, the
optimization step is set to t ∈ [0, 20] encompassing the entire process.
Baseline Models. We choose two representative text-to-image diffusion models
with distinct generation capacities to comprehensively evaluate the effectiveness
of UniFL, including (i) SD1.5 [36]; (ii) SDXL [32]. Based on these models, we
pick up several state-of-the-art methods(i.e. ImageReward [57], Dreamshaper [9],
and DPO [50] for generation quality improvement, LCM [27], SDXL-Turbo [40],
and SDXL-Lightning [25] for inference acceleration) to compare the effective-
ness of quality improvement and acceleration. All results of these methods are
reimplemented with the official code provided by the authors.
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Model Inference Steps FID↓ CLIP Score↑ Aesthetic↑

SD1.5 20 37.99 0.308 5.26
SD1.5 ImageReward [57] 20 32.31 0.312 5.37
SD1.5 DreamShaper [9] 20 34.21 0.313 5.44

SD1.5 DPO [50] 20 32.83 0.308 5.22
SD1.5 UniFL 20 31.14 0.318 5.54

SD1.5 4 42.91 0.279 5.16
SD1.5 LCM [27] 4 42.65 0.314 5.71

SD1.5 DreamShaper LCM [28] 4 35.48 0.314 5.58
SD1.5 UniFL 4 33.54 0.316 5.88

SDXL 25 27.92 0.321 5.65
SDXL ImageReward [57] 25 26.71 0.319 5.81
SDXL DreamShaper [9] 25 28.53 0.321 5.65

SDXL DPO [50] 25 35.30 0.325 5.64
SDXL UniFL 25 25.54 0.328 5.98

SDXL 4 125.89 0.256 5.18
SDXL LCM [27] 4 27.23 0.322 5.48
SDXL Turbo [40] 4 30.43 0.325 5.60

SDXL Lighting [25] 4 28.48 0.323 5.66
SDXL UniFL 4 26.25 0.325 5.87

Table 1: The quantitative comparison between our method and other methods on
SD1.5 and SDXL architecture. The best performance is highlighted with bold font,
and the second-highest performance is shown with underline.

Evaluation Metrics We generate the 5K image with the prompt from the
COCO2017 validation split to report the Fréchet Inception Distance(FID) [20]
as the overall visual quality metric. We also report the CLIP score with ViT-
B-32 [12] and the aesthetic score with LAION aesthetic predictor to evaluate
the text-to-image alignment and aesthetic quality of the generated images, re-
spectively. Given the subjective nature of quality evaluations, we also conducted
comprehensive user studies to obtain a more accurate evaluation. For more
implementation details of UniFL, please refer to the Appendix.

5.2 Main Results

Quantitative Comparison. Tab.1 summarize the quantitative comparisons
with competitive approaches on SD1.5 and SDXL. Generally, UniFL exhibits
consistent performance improvement on both architectures and surpasses the
existing methods of focus on improving generation quality or acceleration. Specif-
ically, DreamShaper achieves considerable aesthetic quality in SD1.5(5.44), while
ImageReard obtains the best performance in SDXL(5.88). Even though, UniFL
surpasses these methods on all of these metrics in both SD1.5 and SDXL. In
terms of acceleration, UniFL still exhibits notable performance advantages, sur-
passing the LCM with the same 4-step inference on both SD1.5 and SDXL.
Surprisingly, we found that UniFL sometimes obtained even better aesthetic
quality with fewer inference steps. For example, when applied to SD1.5, the aes-
thetic score is boosted from 5.26 to 5.54 without acceleration. After executing
the acceleration with the adversarial feedback learning, the aesthetic score is fur-
ther improved to 5.88 with much fewer inference steps. The related reasons will
be investigated in the ablation experiment. We also compared the two latest ac-
celeration methods on SDXL, including the SDXL Turbo and SDXL Lightning.
Although retaining the high text-to-image alignment, we found that the image
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Fig. 4: The user study about UniFL and other methods with 10 users on the generation
of 500 prompts in generation quality(right) and inference acceleration(right).

SDXL  +
ImageReward

SDXL  + 
DPO

SDXL  + 
UniFL(4 steps)

SDXL  + 
Turbo(4 steps)

SDXL  + 
LCM(4 steps)SDXL

SDXL  + 
UniFL

A high-contrast photo of a panda riding a horse. The panda is wearing a wizard hat and is reading a book.

a bloody mary cocktai

A warrior wombat holding a sword and shield in a fighting stance. The wombat stands in front of the Arc de Triomphe on a day shrouded mist.

Fig. 5: The visualization of the generation results of different methods based on SDXL.

generated by SDXL Turbo tends to lack fidelity, leading to an inferior FID score.
SDXL Lightning achieves the most balanced performance in all of these aspects
and reaches impressive aesthetic quality in 4-step inference. However, UniFL still
outperforms it in all kinds of metrics and achieves the best performance.
User Study. We conducted a comprehensive user study using SDXL to evalu-
ate the effectiveness of our method in enhancing generation quality and accel-
eration. As illustrated in Fig.4, our method significantly improves the original
SDXL in terms of generation quality with 68% preference rate and outperforms
DreamShaper and DPO by 36% and 25% preference rate, respectively. Thanks
to perceptual feedback learning and decoupled aesthetic feedback learning, our
method exhibits improvement even when compared to the competitive ImageRe-
ward, and is preferred by 17% additional people. In terms of acceleration, our
method surpasses the widely used LCM by a substantial margin of 57% with
4-step inference. Even when compared to the latest acceleration methods like
SDXL-Turbo and SDXL-Lightning, UniFL still demonstrates superiority and ob-
tains more preference. This highlights the effectiveness of adversarial feedback
learning in achieving acceleration.
Qualitative Comparison As shown in Fig.5, UniFL achieves superior genera-
tion results compared with other methods. For example, when compared to Im-
ageReward, UniFL generates images that exhibit a more coherent object struc-
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Prompt: A young girl playing with a frisbee in a grassy field surrounded by trees.

Prompt:  A person riding a skateboard on a ramp.

Prompt: A man standing next to a brown horse in a dirt field, holding a leash.

Prompt: A man riding on the back of an elephant in a city street.

Prompt: A man and two elephants standing in a dirt area with a water hose in the foreground.

Prompt: Two people carrying surfboards on a sandy beach with a clear blue sky and white clouds in the background.

GT Image GT Mask
GT Image

Predicted Mask Generated Image
Generated Image
Predicted Mask GT Image GT Mask

GT Image
Predicted Mask Generated Image

Generated Image
Predicted Mask

Fig. 6: Illustration of PeFL’s impact on structure optimization. The instance segmen-
tation model(SOLO) provides more effective feedback on structure generation issues
such as distorted limbs, missing key objects, and subject ambiguity during fine-tuning.

A boy jumping off a spaceship.

A photo of a soft, plush teddy bear sits on a child's bed.

A close-up of a lady with sunglasses.

A skydiver jumps from a plane, Hayao Miyazaki style.

Three children on a couch, full shot.

A ballerina …. executing a pirouette in front of audiences.

SD 1.5
SD 1.5 + 

Pretrain Structure
SD 1.5 +

PeFL Structure SDXL
SDXL + 

Pretrain Structure
SDXL + 

PeFL Structure

woman, wearing a dress, Bohemia

A girl, frescos

a family, impasto

SD 1.5
SD 1.5 + 

Pretrain Style
SD 1.5 + 

PeFL Style SDXL
SDXL + 

Pretrain Style
SDXL +

 PeFL Style

Mona Lisa, ASCII art 
art

A tree, oil painting

Woman wearing a dress, victorian

(a) (b)

Fig. 7: The ablation study on the PeFL optimization. We compared the generated
results utilizing diffusion loss and PeFL with the same perceptual dataset. (a) The effect
of PeFL on style optimization. (b) The effect of PeFL on the structure optimization.

ture (e.g., the horse), a more appropriate style (e.g., the cocktail), and a more
captivating aesthetic quality (e.g., the warrior). Notably, even with fewer infer-
ence steps, UniFL consistently showcases higher generation quality, outperform-
ing other methods. It is worth noting that SDXL-Turbo, due to its modification
of the diffusion hypothesis, tends to produce images with a distinct style.

5.3 Ablation Study

How PeFL works.
To gain a better understanding of how PeFL works, we take the example

of structure optimization with PeFL and visualize the intermediate results. As
shown in Fig.6, the instance segmentation model effectively captures the overall
structure of the generated object and successfully identifies the structural de-
fects, such as the distorted limbs of the little girl, the missing skateboard, and
the surfboard, and the ambiguity elephant and horse. Instead of assigning equal
importance to each pixel with naive diffusion loss, this type of feedback enables
the diffusion model to focus more on the specific structured concepts. We show-
case some generation results after optimization style and structure via PeFL in
Fig.7. It is evident that the PeFL significantly boosts style generation(e.g. ’fres-
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(a) (b)

Fig. 8: (a) Human preference evaluation of different components in UniFL with SD1.5.
(b) Human preference evaluation of the generated video via plugging the AnimiateDiff
module into SD1.5(light green) and SD1.5 optimized by UniFL(dark green).

A majestic lion stands proudly on a rock, overlooking
the vast African savannah Its golden mane is flying in
the wind, bathed in the warm colors of the sunset

A street
Non-Adversarial Training

A street
Adversarial Training

Step 1000 Step 3000 Step 5000 Step 1000 Step 3000 Step 5000 4-Step Inference

A young badger delicately sniffing 
a yellow rose

A close-up of a lady with sunglasses

w/o. Adv w. Adv
(b)(a)

A majestic lion stands proudly on a rock, overlooking
the vast African savannah Its golden mane is flying in
the wind, bathed in the warm colors of the sunset

Fig. 9: Experiment of SD1.5 without and with the adversarial objective. (a) The in-
termediate results in 20 steps inference. (b) The 4 steps inference results.

cos’, ’impasto’ style) and object structure optimization(e.g. the woman’s glasses,
ballet dancer’s legs) compared with the naive diffusion loss.
Effect of decoupled feedback learning.

To verify the importance of this decoupled aesthetic strategy, we conduct ex-
periments by fine-tuning the SD1.5 model using a global aesthetic reward model
trained with all the collected aesthetic preference data of different dimensions.
As depicted in Fig.8(a), due to alleviate the challenge of abstract aesthetic learn-
ing, the utilization of decoupled aesthetic reward tuning resulted in generation
results that were preferred by more individuals, surpassing the non-decoupled
way by 17%. Fig.8(a) also shows that the active prompt selection obtained a
higher preference rate(54.6% vs 45.4%), which demonstrates the importance of
the prompt selection strategy.
How adversarial feedback learning accelerates. UniFL introduces ad-
versarial feedback learning for acceleration, and the acceleration results even
exceed the non-acceleration model in some scenarios; according to our experi-
mental observations, the reason for the acceleration and the significant perfor-
mance can be attributed to two potential factors: (i) Adversarial training enables
the reward model to continuously provide guidance: As shown in Fig.9(a), the
diffusion models with traditional feedback fine-tuning often suffer from rapid
overfitting to the feedback signals generated by the frozen reward models, which
is known as over-optimization. By employing adversarial feedback learning, the
trainable reward model (acting as the discriminator) can swiftly adapt to the
distribution shift of the diffusion model output, significantly mitigating the over-
optimization phenomenon, which enables the reward model to provide effective
guidance throughout the optimization process, (ii) Adversarial training expands
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(UniFL + SD1.5 LoRA)
MoXin Anime Lineart

(UniFL + SDXL 4-Step LoRA)
TShirtDesignRedmondV2

Dressed animals

ParchartXL

Pixel Art XLEpi Noiseoffset

(UniFL + SDXL LoRA)

A handsome male model with suit.

(UniFL + SD1.5 ControlNet)

a house stands
with a car parked by.

Fig. 10: Both SD1.5 and SDXL still keep high adaptation ability after being enhanced
by the UniFL, even after being accelerated and inference with fewer denoising steps.

the time step of feedback learning optimization: Including the strong adversarial
targets in the training process forces high-noise timesteps to generate clearer
images via the adversarial objective, which enables the reward model to perform
well even under a few denoising steps. As presented in Fig.9(b), after disabling
the adversarial loss and retaining the optimization step containing the entire de-
noising process, the reward model fails to provide effective guidance for samples
under fewer denoising steps without the adversarial training object due to the
high-level noise, which results in poor inference results. With these two bene-
fits, adversarial feedback learning significantly improves the generation quality
of samples in lower inference steps and finally achieves superior acceleration
performance.

For more ablation study of UniFL, please refer to the Appendix.

5.4 Generalization Study

To further verify the generalization of UniFL, we performed downstream tasks
including LoRA, ControlNet, and AnimateDiff. Specifically, we selected several
popular styles of LoRAs, several types of ControlNet, and AnimateDiff mod-
ules [18] and inserted them into our models respectively to perform correspond-
ing tasks. As shown in Fig.10 and Fig.8(b), our model demonstrates excellent
capabilities in style learning, controllable generation, and video generation.
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6 Discussion and Limitations

UniFL demonstrates promising results in generating high-quality images. How-
ever, there are several avenues for further improvement:
Large Visual Perception Models: We are actively investigating the utiliza-
tion of advanced large visual perception models to provide enhanced supervision.
Extreme Acceleration: While the current 1-step model’s performance may be
relatively subpar, the notable success we have achieved in 4-step inference sug-
gests that UniFL holds significant potential for exploration in one-step inference.
Streamlining into a Single-stage Optimization: Exploring the possibility of
simplifying our current two-stage optimization process into a more streamlined
single-stage approach is a promising direction for further investigation.

7 Conclusion

We propose UniFL, a unified framework that enhances visual quality, aesthetic
appeal, and inference efficiency through feedback learning. By incorporating per-
ceptual, decoupled, and adversarial feedback learning, UniFL exceeds existing
methods in terms of both generation quality and inference acceleration and gen-
eralizes well to various types of diffusion models and different downstream tasks.

References

1. Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort,
S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston,
S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J.,
McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a helpful and harmless
assistant with reinforcement learning from human feedback (2022) 4

2. Black, K., Janner, M., Du, Y., Kostrikov, I., Levine, S.: Training diffusion models
with reinforcement learning (2024) 4

3. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions (2023) 4

4. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context
(2018) 19

5. Canny, J.: A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence (6), 679–698 (1986) 19

6. Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z., Kwok, J., Luo, P.,
Lu, H., Li, Z.: Pixart-α: Fast training of diffusion transformer for photorealistic
text-to-image synthesis (2023) 4

7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation (2017) 19, 20

8. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
mask transformer for universal image segmentation (2022) 22, 23

9. civitai: Dreamshaper v8 (2024), https://civitai.com/models/4384/dreamshaper
9, 10

https://civitai.com/models/4384/dreamshaper


16 J. Zhang et al.

10. Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X.,
Shao, Z., Yang, H., Tang, J.: Cogview: Mastering text-to-image generation via
transformers (2021) 4

11. Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang,
J., Shum, K., Zhang, T.: Raft: Reward ranked finetuning for generative foundation
model alignment (2023) 2

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale (2021)
10

13. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: Autonomous,
bidirectional and iterative language modeling for scene text recognition (2021) 19

14. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity (2022) 2

15. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G.,
Cohen-Or, D.: An image is worth one word: Personalizing text-to-image gener-
ation using textual inversion (2022) 2, 4

16. Girdhar, R., Singh, M., Brown, A., Duval, Q., Azadi, S., Rambhatla, S.S., Shah,
A., Yin, X., Parikh, D., Misra, I.: Emu video: Factorizing text-to-video generation
by explicit image conditioning. arXiv preprint arXiv:2311.10709 (2023) 2

17. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial networks (2014) 4

18. Guo, Y., Yang, C., Rao, A., Wang, Y., Qiao, Y., Lin, D., Dai, B.: Animatediff:
Animate your personalized text-to-image diffusion models without specific tuning.
arXiv preprint arXiv:2307.04725 (2023) 2, 14

19. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.:
Prompt-to-prompt image editing with cross attention control (2022) 4

20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium (2018) 10

21. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen,
W.: Lora: Low-rank adaptation of large language models (2021) 2, 4

22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2022) 4
23. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,

Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything
(2023) 19

24. Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with
differentiable binarization (2019) 19

25. Lin, S., Wang, A., Yang, X.: Sdxl-lightning: Progressive adversarial diffusion dis-
tillation (2024) 9, 10

26. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft coco: Common objects in context
(2015) 9

27. Luo, S., Tan, Y., Huang, L., Li, J., Zhao, H.: Latent consistency models: Synthe-
sizing high-resolution images with few-step inference (2023) 2, 4, 9, 10

28. Luo, S., Tan, Y., Patil, S., Gu, D., von Platen, P., Passos, A., Huang, L., Li, J.,
Zhao, H.: Lcm-lora: A universal stable-diffusion acceleration module (2023) 2, 4,
10

29. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Guided
image synthesis and editing with stochastic differential equations (2022) 2, 4



UniFL 17

30. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models (2022) 4

31. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang,
C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., Lowe, R.: Training
language models to follow instructions with human feedback (2022) 4

32. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,
J., Rombach, R.: Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952 (2023) 2, 4, 9, 20

33. Qin, C., Zhang, S., Yu, N., Feng, Y., Yang, X., Zhou, Y., Wang, H., Niebles, J.C.,
Xiong, C., Savarese, S., Ermon, S., Fu, Y., Xu, R.: Unicontrol: A unified diffusion
model for controllable visual generation in the wild (2023) 2, 4

34. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents (2022) 2, 4

35. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2022) 2, 4

36. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2022) 9

37. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation
(2023) 2, 4

38. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J.,
Norouzi, M.: Photorealistic text-to-image diffusion models with deep language un-
derstanding (2022) 2, 4

39. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models
(2022) 2, 4

40. Sauer, A., Lorenz, D., Blattmann, A., Rombach, R.: Adversarial diffusion distilla-
tion (2023) 2, 9, 10

41. Sauer, A., Lorenz, D., Blattmann, A., Rombach, R.: Adversarial diffusion distilla-
tion (2023) 4

42. Sauer, A., Lorenz, D., Blattmann, A., Rombach, R.: Adversarial diffusion distilla-
tion. arXiv preprint arXiv:2311.17042 (2023) 8

43. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., Schramowski, P., Kundurthy,
S., Crowson, K., Schmidt, L., Kaczmarczyk, R., Jitsev, J.: Laion-5b: An open
large-scale dataset for training next generation image-text models (2022) 9

44. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J.:
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
(2017) 2

45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2015) 9

46. Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models (2023) 2, 3, 4
47. Sun, K., Pan, J., Ge, Y., Li, H., Duan, H., Wu, X., Zhang, R., Zhou, A., Qin,

Z., Wang, Y., Dai, J., Qiao, Y., Wang, L., Li, H.: Journeydb: A benchmark for
generative image understanding (2023) 20

48. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-
lykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao,



18 J. Zhang et al.

C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kar-
das, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux,
M.A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov,
T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Sal-
adi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang,
B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom,
T.: Llama 2: Open foundation and fine-tuned chat models (2023) 8, 24

49. Turc, I., Nemade, G.: Midjourney user prompts & generated images (250k) (2022).
https://doi.org/10.34740/KAGGLE/DS/2349267 2, 20

50. Wallace, B., Dang, M., Rafailov, R., Zhou, L., Lou, A., Purushwalkam, S., Ermon,
S., Xiong, C., Joty, S., Naik, N.: Diffusion model alignment using direct preference
optimization (2023) 2, 9, 10

51. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Solo: A simple framework for
instance segmentation (2021) 9, 23

52. Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Dif-
fusiondb: A large-scale prompt gallery dataset for text-to-image generative models
(2023) 9

53. Wu, J.Z., Ge, Y., Wang, X., Lei, W., Gu, Y., Shi, Y., Hsu, W., Shan, Y., Qie, X.,
Shou, M.Z.: Tune-a-video: One-shot tuning of image diffusion models for text-to-
video generation (2023) 2

54. Wu, X., Hao, Y., Sun, K., Chen, Y., Zhu, F., Zhao, R., Li, H.: Human preference
score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis (2023) 2, 4

55. Wu, X., Sun, K., Zhu, F., Zhao, R., Li, H.: Human preference score: Better aligning
text-to-image models with human preference (2023) 2, 4

56. Xie, S., Tu, Z.: Holistically-nested edge detection (2015) 19
57. Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., Dong, Y.: Imagere-

ward: Learning and evaluating human preferences for text-to-image generation
(2023) 2, 3, 4, 5, 7, 9, 10

58. Xu, Y., Zhao, Y., Xiao, Z., Hou, T.: Ufogen: You forward once large scale text-to-
image generation via diffusion gans. arXiv preprint arXiv:2311.09257 (2023) 8

59. Xue, Z., Song, G., Guo, Q., Liu, B., Zong, Z., Liu, Y., Luo, P.: Raphael: Text-to-
image generation via large mixture of diffusion paths (2023) 2, 4

60. Ye, H., Zhang, J., Liu, S., Han, X., Yang, W.: Ip-adapter: Text compatible image
prompt adapter for text-to-image diffusion models (2023) 2

61. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models (2023) 2, 4

62. Zhang, Z., Zhang, S., Zhan, Y., Luo, Y., Wen, Y., Tao, D.: Confronting reward
overoptimization for diffusion models: A perspective of inductive and primacy bi-
ases (2024) 8

63. Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao, V., Dai, A., Chen, Z., Le, Q.,
Laudon, J.: Mixture-of-experts with expert choice routing (2022) 2

64. Štrupl, M., Faccio, F., Ashley, D.R., Srivastava, R.K., Schmidhuber, J.: Reward-
weighted regression converges to a global optimum (2022) 4

https://doi.org/10.34740/KAGGLE/DS/2349267
https://doi.org/10.34740/KAGGLE/DS/2349267


UniFL: Improve Stable Diffusion via Unified
Feedback Learning

(Appendix)

A More Example of PeFL

The proposed perceptual feedback learning (PeFL) is very flexible and can lever-
age various existing visual perception models to provide specific aspects of visual
quality feedback. To demonstrate the scalability of PeFL, we further provide a
case study of PeFL for layout optimization based on the semantic segmentation
model. Generally, the semantic segmentation map characterizes the overall lay-
out of the image as shown in Fig.1(a). Therefore, semantic segmentation models
can serve as a better layout feedback provider. Specifically, we utilize the visual
semantic segmentation model to execute semantic segmentation on the denoised
image x′0 to capture the current generated layout and supervise it with the
ground truth segmentation mask and calculate semantic segmentation loss as
the feedback on the layout generation:

L(θ)pefl_layout = Ex0∼D,x′
0∼G(xta )

Lsemantic(ms(x
′

0), GT (x0)) (1)

where ms represents the semantic segmentation model, GT (x0) is the ground
truth semantic segmentation annotation and the Lsemantic is the semantic seg-
mentation loss depending on the specific semantic segmentation model.

We conduct the experiment of PeFL layout optimization based on SD1.5.
Specifically, we utilize the COCO Stuff [4] with semantic segmentation annota-
tion as the semantic layout dataset and DeepLab-V3 [7] as the semantic seg-
mentation model. The experiment results are presented in Fix.1(b). It demon-
strates that the PeFL significantly improves the layout of the generated image,
for instance, the bear on the bed in a diagonal layout. We further conduct the
user study to evaluate the effectiveness of PeFL with the semantic segmenta-
tion model quantitatively. The results are shown in Fig.4(c). Compared with
the model fine-tuning with only the aesthetic feedback learning, incorporating
the PeFL of layout optimization, the model generates images that obtain more
preference in both layout and details terms.

Indeed, PeFL is an incredibly versatile framework that can be applied to a
wide range of visual perceptual models, such as OCR models [13, 24] and edge
detection models [5,56], among others. Furthermore, we are actively delving into
the utilization of the visual foundation model, such as SAM [23], which holds
promising potential in addressing various visual limitations observed in current
diffusion models.
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SD1.5
SD1.5 +

Pretrain Seg
SD1.5 +

PeFL Seg

Prompt: A majestic lion stands proudly on a rock, overlooking 
the vast African savannah

Prompt: A pair of worn running shoes sits at the door

Prompt: A photo of a soft, plush teddy bear sits on a child's
bed Diagonal composition
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Prompt: A woman standing on a dock with a pink umbrella in her hand.

Prompt: Two people riding on the back of two horses in a green field.

Prompt: A man and a woman standing in front of a red and white flag, holding
large scissors as if they are cutting the flag..

(a) (b)
Fig. 1: (a) The illustration of the PeFL on the layout optimization. The semantic
segmentation model captures the layout and text-to-image misalignment between the
ground truth image and the generated image(DeepLab-V3 [7] is taken as the segmenta-
tion model). (b) The layout optimization effect of the PeFL with semantic segmentation
model on SD1.5.

B Details of Data Collection in Decoupled Feedback
Learning

We break down the general and coarse aesthetic concept into more specific di-
mensions including color, layout, detail, and lighting to ease the challenge of
aesthetic fine-tuning. We then collect the human preference dataset along each
dimension. Generally, we employ the SDXL [32] as the base model and utilize
the prompts from the MidJourney [47, 49] as input, generating two images for
each prompt. Subsequently, we enlist the expertise of 4 to 5 professional an-
notators to assess and determine the superior image among the generated pair.
Given the inherently subjective nature of the judgment process, we have adopted
a voting approach to ascertain the final preference results for each prompt. In
addition to this manual annotation, we have combined two automatic feedback
data generation methods to increase the diversity of preference data. Specifi-
cally, we initially curated a set of trigger words for each aesthetic dimension.
By incorporating these words into input prompts, we can steer the diffusion
model to focus on generating images that emphasize the corresponding aesthetic
dimension. We then employ two strategies to generate the aesthetic feedback
data, as depicted in Fig.3(b). (1) Temporal Contrastive Samples: As the
denoising process progresses, it is typically observed that the model generates
images of progressively higher quality. In the later denoising steps, the model
demonstrates enhanced responsiveness to specific aesthetic trigger words. As a
result, the image generated during the later denoising steps along with the one
generated in the earlier denoising steps provides valuable feedback on the tar-
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geted aesthetic dimension. (2) Cross-Model Contrastive Samples: Different
diffusion models possess varying generative capabilities, resulting in images with
different aesthetic qualities when provided with the same input prompt. We se-
lect several improved diffusion models, such as Kandinsky∗, and Playground†, to
generate preferred samples with higher aesthetic quality. Conversely, we use the
vanilla diffusion model to generate unpreferred samples with inferior aesthetic
quality. Combined with manual annotation and automatic annotation strategy,
we finally curate 30,000, 32,000, 30,000, and 30,000 data points for the color,
layout, detail, and lighting dimensions, respectively. Examples of the collected
aesthetic feedback data of different dimensions are visually presented in Fig.2.

C Extend Details of Prompt Selection

We introduce an active prompt selection strategy designed to choose the most
informative and diverse prompts from a vast prompt database. The comprehen-
sive implementation of this selection strategy is outlined in the Algorithm. Our
strategy’s primary objective is to select prompts that offer maximum informa-
tion and diversity. To accomplish this, we have devised two key components:
the Semantic-based Prompt Filter and the Nearest Neighbor Prompt
Compression. The semantic-based prompt filter is designed to assess the se-
mantic relationship embedded within the prompts and eliminate prompts that
lack substantial information. To accomplish this, we utilize an existing scene
graph parser‡ as a tool to parse the grammatical components, such as the sub-
jective and objective elements. The scene graph parser also generates various
relationships associated with the subjective and objective, including attributes
and actions. We then calculate the number of relationships for each subjective
and objective and select the maximum number of relationships as the metric of
information encoded in the prompt. A higher number of relationships indicates
that the prompt contains more information. We filter out prompts that have
fewer than τ1 = 1 relationships, which discard the meaningless prompt like ‘ff
0 0 0 0‘ to reduce the noise of the prompt set.

Upon completing the filtration process, our objective is to select a prede-
termined number of prompts that exhibit maximum diversity. This approach is
driven by the understanding that during preference fine-tuning, there is a ten-
dency to encounter the over-optimization phenomenon, as depicted in Fig.4(c). In
such cases, the diffusion model rapidly overfits the guidance provided by the re-
ward model, ultimately resulting in the loss of effectiveness of the reward model.
One contributing factor to this phenomenon is the distribution of prompts for
optimization. If the prompts are too closely distributed, the reward model is
forced to frequently provide reward signals on similar data points. This leads
to the diffusion model rapidly overfitting and collapsing within a limited num-
ber of optimization steps. To address this challenge, we propose the selection of

∗https://github.com/ai-forever/Kandinsky-2
†https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
‡https://github.com/vacancy/SceneGraphParser

https://github.com/ai-forever/Kandinsky-2
https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic
https://github.com/vacancy/SceneGraphParser
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Model Style Response Rate
SD1.5 30.55%

SD1.5 + Style Pretrain 35.25%
SD1.5 + Style PeFL 45.14%

SDXL 66.67%
SDXL + Style Pretrain 68.34 %

SDXL + Style 75.27%

Table 1: Ablation on the PeFL in
style generation.

Method FID↓ CLIP Score↑ Aesthetic ↑
SD1.5 37.99 0.308 5.26

SD1.5 + Non-Decouple Aes 35.12 0.308 5.33
SD1.5 + Decouple Aes 33.78 0.310 5.40

SD1.5 + Decouple Aes + Active 31.89 0.315 5.48

Table 2: Ablation on the decoupled feedback
learning. Decouple Aes: Decoupled Aesthetic
Strategy; Active: Active Prompt Selection.

diverse prompts to mitigate the problem. Specifically, with a fixed number of
prompt selections in mind, we aim to ensure that the chosen prompts exhibit
maximum diversity. We adopt an iterative process to achieve this objective. In
each iteration, we randomly select a seed prompt and subsequently suppress its
nearest neighbor§ prompts that have a similarity greater than τ2 = 0.8. The
next iteration commences with the remaining prompts, and we repeat this pro-
cess until the similarity between the nearest neighbors of all prompts falls below
the threshold τ2. Finally, we randomly select the prompts, adhering to the fixed
number required for preference fine-tuning.

D More Ablation Study

Extend ablation on the PeFL. We conduct a further detail ablation study to
evaluate the effectiveness of the PeFL on style optimization. Specifically, we col-
lect 90 prompts about style generation and generate 8 images for each prompt.
Then, we manually statistic the rate of correctly responded generation to calcu-
late the style response rate. As presented in Tab.1, it is evident that the style
PeFL greatly boosts the style generation on both architectures, especially for
SD1.5 with about 15% improvement. In contrast, leveraging naive diffusion loss
for fine-tuning with the same collected style dataset suffers limited improvement
due to stylistic abstraction missing in latent space.
Ablation on Visual Perceptual Model Selection. PeFL utilizes various
visual perceptual models to provide visual feedback in specific dimensions to
improve the visual generation quality on particular aspects. Different visual per-
ceptual models of a certain dimension may have different impacts on the per-
formance of PeFL. Taking the structure optimization of PeFL as an example,
we investigated the impact of the accuracy of instance segmentation models
on PeFL performance. Naturally, the higher the precision of the instance seg-
mentation, the better the performance of structure optimization. To this end,
we choose the Mask2Former [8], another representative instance segmentation
model with state-of-the-art performance, for the structure optimization with
PeFL. The results are shown in Fig.3(a) and Fig.4(b). It is intriguing to note
that the utilization of a higher precision instance segmentation model does not

§https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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Algorithm 2 Active Prompt Selection

1: Input: Initial collected prompt set D.
2: Initialization: The number of selected prompts N for aesthetic preference fine-

tune, decided by the optimization steps until overoptimization.
3: Return: The final selected prompts SP
4: P = ∅ // Initialize the filtered prompts set
5: for prompt pi ∈ D do
6: SR ← SemanticParser(pi)
7: if |SR| > τ1 then
8: P ← pi // Append the informative prompt
9: end if

10: end for
11: I ← shuffle(range(len(| P|))) // Get the random index
12: R ← False // Set the removed prompt array
13: S ← ∅ // Set the selected prompt index
14: Dist, Inds ← KNN(R, k) // Get the K-nearest neighbor for each prompt
15: for index Ii ∈ I do
16: if not R[Ii] and Ii not in S then
17: S ← Ii // Append the selected prompt
18: dist, inds = Dists[Ii], Inds[Ii] // Get the K-nearest neighbor similarity
19: for index di ∈ inds do
20: if dist[di] > τ2 then
21: R[di] = True
22: end if
23: end for
24: end if
25: end for
26: SP ← RandomSelect(P, S, N) // Random select N diverse prompt according the

retained index
27: return SP

yield significantly improved results in terms of performance. This may be at-
tributed to the different architectures of the instance segmentation of these two
models. In SOLO [51], the instance segmentation is formulated as a pixel-wise
classification, where each pixel will be responsible for a particular instance or the
background. Such dense supervision fashion enables the feedback signal to better
cover the whole image during generation. In contrast, Mask2Former [8] takes the
query-based instance segmentation paradigm, where only a sparse query is used
to aggregate the instance-related feature and execute segmentation. This sparse
nature of the query-based method makes the feedback insufficient and leads to
inferior fine-tuning results. We leave further exploration of how to choose the
most appropriate visual perceptual model for feedback tuning to future work.
Ablation on Decoupled Feedback Learning. To evaluate the effectiveness
of the two key designs in decoupled feedback learning, namely decoupled aes-
thetic feedback fine-tuning and active prompt selection, we conducted a series
of incremental experiments using SD1.5. The results of these experiments are
summarized in Tab.2. To validate the necessity of the decoupled design, we first
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trained a global aesthetic reward model using the collected aesthetic prefer-
ence data across different dimensions and directly fine-tuned the diffusion model
using this reward model. As shown in Tab.2, while direct fine-tuning yielded
some reasonable improvements, the decoupled aesthetic reward models achieved
more significant performance enhancements, particularly in terms of FID and
aesthetic quality (FID: 33.78 vs 35.12, aesthetic: 5.40 vs 5.26). This is because
decoupled design not only reduces the complexity of learning abstract aesthetic
concepts but also mitigates potential conflicts during optimization as studied
in [48]. Building upon the decoupled reward model fine-tuning, the incorpo-
ration of active prompt selection resulted in a further boost in performance.
This emphasizes the crucial role of prompt selection in aesthetic fine-tuning and
demonstrates its importance in achieving superior results. Actually, as depicted
in Fig.4(a), we observed that the over-optimization can be greatly eased with
the actively selected prompts. Such informative and diverse prompts allow the
reward model to provide feedback under a broader data distribution, avoiding
overfitting quickly and finally optimizing the diffusion model more sufficiently.
Ablation on Acceleration Steps. We comprehensively compared UniFL and
existing acceleration methods using different numbers of inference steps, rang-
ing from 1 to 8 as illustrated in Fig.5. Generally, UniFL performs exceptionally
well with 2 to 8 inference steps, achieving superior text-to-image alignment and
higher aesthetic quality. The LCM method is prone to generate blurred images
when using fewer inference steps and requires more steps (e.g., 8 steps) to pro-
duce images of reasonable quality. However, both UniFL and LCM struggle to
generate high-fidelity images with just 1-step inference, exhibiting a noticeable
gap compared to SDXL-Turbo. This discrepancy arises because SDXL-Turbo is
intentionally designed and optimized for extremely low-step inference scenarios.
Consequently, when more inference steps are employed (e.g., in the case of the
Labradoodle), the color of the image tends to appear unnatural. Therefore, there
is still room for further exploration to enhance the acceleration capabilities of
UniFL towards 1-step inference.

E More Visualization Results

We present more visual comparison between different methods in Fig.6. It demon-
strates the superiority of UniFL in both the generation quality and the accelera-
tion. In terms of generation quality, UniFL exhibits more details(e.g. the hands
of the chimpanzee), more complete structure(e.g. the dragon), and more aes-
thetic generation(e.g. the baby sloth and the giraffe) compared with DPO and
ImageReward. In terms of acceleration, the LCM tends to generate a blurred
image, while the SDXL-Turbo generates the image with an unpreferred style
and layout. As a comparison, UniFL still retains the high aesthetic detail and
structure under the 4-step inference.
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Fig. 2: The visualization of the collected aesthetic feedback data along different di-
mensions.
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Superhero, modeling in Venice, Italy, with a confident smile.

An owl perches quietly on a twisted branch deep within an 
ancient forest.

A delicate porcelain teacup sits on a saucer, its surface adorned 
with intricate blue patterns.

SD1.5
SD1.5 + 

PeFL(Mask2Former)
SD1.5 + 

PeFL(SOLO)
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Prompt: “Perspective layout, A
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Prompt: “Soft lighting ， A couple of
giraffes are in a field”
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Fig. 3: (a) The visual comparison between the PeFL structure optimization with dif-
ferent instance segmentation models. (b) The illustration of the automatic aesthetic
feedback data annotation. Top: Temporal Contrastive Samples. Bottom: Cross-Model
Contrastive Samples.

（a) （c)

（b)

Fig. 4: (a) The visualization of the training loss curve during the preference fine-
tuning of different prompt sets. (b) The user study results on the PeFL instruction
optimization with different instance models. PeFL(SOLO): PeFL fine-tune SD1.5
with SOLO as instance model. PeFL(Mask2Former): PeFL fine-tune SD1.5 with
Mask2Former as instance model. (c) The user study results on the SD1.5 with (Dark
Green) and without(Light Green) PeFL layout optimization.
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UniFL
8 Steps 4 Steps 2 Steps 1 Steps

A photo of a light bulb in outer space traveling the galaxy with a sailing boat
inside the light bulb.

LCM
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SDXL-Turbo
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UniFL
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LCM
8 Steps 4 Steps 2 Steps 1 Steps
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A cream-colored labradoodle wearing glasses and black beret teaching calculus at a 
blackboard
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25 Steps

Fig. 5: The visual comparison of different acceleration methods under various inference
steps.
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a chimpanzee wearing a bowtie and playing a piano

a dragon

A fluffy baby sloth with a knitted hat trying to figure out a laptop, close up, highly detailed, studio lighting

a giraffe made of turtle

An old man

Fig. 6: More visualization of the generated results of different methods.
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